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A method of numerically integrating the Navier-Stokes equations for cortain
three-dimensional incompressible flows is deseribed. The techninue is presented
through application to the particular problem of deseribing thermal convection
in i rotating annulus. The equations, in eylindrical polar eo-ordinate form, are
integrated with respeet to time by a marching process, together with the solving
of a Poissan equation for the pressure. A suitable form of the finite difference
equations gives a computationally-stable long-term integration with reasonably
taithful representation of the spatial and temporal characteristics of the flow,

Trigonometric interpolation techniques provide aceurate (discretely exact)
solutions to the Poisson equation. By using an auxiliary algorithm for rapid
evaluation of trigonometrie transforms, the proportion of computation needed
to solve the Poisson equation ean be reduced to less than 2549, of the total time
necded to advance one time step. Computing on a UNTVAC 1108 machine, the
floow can be advanced one time-step in 2 sec for a 14 % 14 x 14 grid upward to 96 sec
for a = 34 = 34 grid,

As an example of the method, some features of a solution for steady wave tlow
i annulus cotivection are presented. The resemblance of this low to the elassical
Fady wave is noted,

1. Introduoction

The object of this paper is to discuss some of the problems of employing the
full Navier—Stokes equations in studying viscous, incompressible, three-dimen-
sional Aluid Hows, These problems are largely connected with the deduetion of
a stable and rational means for numerically integrating these equations. In
general, it appears that there have been difficultics oceurring in computational
speed, stability, accuracy or treatment of boundary conditions. The particular
system of equations and the domain of integration to be discussed have been
designed in essence for the study of thermal convection in a rotating annalus.
However, the physical considerations do not directly or erucially bear on the
establishing of a stable mathematical hydrodynamic framework and the
method posseszses a certain generality, The method can be direcily reduced Lo
apply to (i) the Cartesian system; (i) non-rotating flow; (iii) isothermal How;
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(iv) two-dimensional flow, or combinations of these. For more complex systems
of flow only some aspects of the method are applicable.

Among the main requirements determining the design of the mathematical
framework are that it should represent both the temporal and spatial distribu-
tions as faithfully as possible. Furthermore, the prediction equations should
closely resemble the true Navier—Stokes equations in order that the computed
flow evolution might follow that of the true fluid, It i= convenient therefore to
work with the basic equations in fundamental velocity—pressure form. However,
it is computationally desirable to solve a Poisson equation for the pressure p in
order to reduce the amount of computation, The Poisson procedure filters out
unimportant external gravity waves and, although it implies that the pressure
adjusts instantancously to flow changes, the assumption is not physically restric-
tive for the Aow under consideration,

The enly mathematical methods available at present for dealing with the full
non-linearity and diffusivity of the Navier-Stokes equations are those using
finite difference methods or finite representation by means of truncated Fourier
spectra. The spatial differencing methods derived from the ideas of Arakawa
(1966) have reached a level of development that provides most of the advantages
of the speetral method whilst avoiding the latter’s disndvantages in representing
non-linear interactions and its restriction to simple geometries; Such a finite
difference selieme will bo presented in this paper.

In designing the finite differenee equations, the well-known centred differencing
is chosen for the time gradients. Such a system produces less non-physical dis-
tortion of the flow transients than do other methods, particularly some iterative
methads (Kurihara 1965), We are assuming that we are interested in the time
dependent part of the flow so that such distortion would be undesirable even
though it could make the computation faster.

The physical aspect of the problem of annulus conveetion is well known and
details may be obtained by consulting Williams (1967).

2, The continuous eguations

Consider o fluid contained between two coaxial eylinders of inner and outer
radii @, b respectively and two parallel horizonlal planes a distance 4 apart
(figure 1). The container rotates with respeet to an inertial system at a constant
rate §2, where the rotation vector, anti-parallel to gravity 8. coincides with the
axis of the eylinders. Motion is measured relative to the solid rotation in eylindri-
cal co-ordinates r, ¢b, 2 based on the axis, r being radial and = vertical. Thevelosity
components are %, v, and w in the zonal, radial and vertical directions respeo-
tivelv.T

The fluid is thermally driven away from a state of solid rotation by an imposed
horizontal temperature gradient AT i.e. the inner and outer eylinders aro held
at different constant temperatures 7, and Tj,. The base is thermally insulated and
the upper surface of the fiuid (z = d) behaves the same way owing to the presence
of a lid (not in contact) inhibiting interaction with the overlying air.

+ This is not srandard notaton.
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Along with making the Boussinesq approximation, we assume for convenience
that the kinematic viseosity v and the thermometrie conduetivity x are constant
and that the centrifugal aceeleration is much smaller than the gravitational
acceleration, ie. Q%a+5)/27 <€ 1. As a consequence the upper surface can he
taken to be of constant height and the free-slip rigid lid condition can be nsed
for this surface,

The above assumptions only slightly modify the physical problem but offer
convenient mathematical simplification without compromising the essential
nature of the Navier-Stokes equations. Upon writing the hydrostatic pressure
deviation as w = pip,, and the temperature deviation as 7, the Navier-Stokes
equations may be expressed in the following form:
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Fiovar 1. Configaration of the system for which the method iz deseribed.

with the heat transfer equation as
DT = V2T, {4
and the equation of mass conservation as
(ri)etuy +rw. =0, (&)

e g _oq 1, I )
where Ta = o ),k ()t (), (6)
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wefm) o

B = E r }Ew#— ;-uaﬁ—;l- :rvf},]. (9)

In order to satisfy the continuity equation, it is convenient to derive an equation
for the pressure from (1), (2) and (3). To obtain this, write the above equations of
motion in convenient vector form

i

'
;i-+v_?v+*3ﬂnv=—'»T#J,-,ﬁ’gT—v'fhw. (10

where w = ¥ 4 v is the vorticity and write the continuity equation in divergence
£ e
& form 1Dp

P =V ¥=—eat =0,
g=V.v p DI ) {11
The divergence of {10
(6 et) = — [V — BoT. — 2Quw + V. (v, V)], (12)

is an equation for the prediction of %, To maintain the meompressible continuity
£ = ), w must satisfy the right member of (12) set to zero. This eondition can be

ﬁK]JI‘ES.»E:Bd as Vi = V. 6. (13)

where G are the components (inertia terms, ete.) of the prediction equations.
The boundary conditions for (15) are that

= G {14}

i.e. the normal pressure gradients must equal the component terms of the normal
velocity equation on each boundary. The index n represents the variables r or
z, In the d-direction the condition is that the How be periodic.

Eguation (13) is of an elliptic tvpe, denoted say as

#(m) = Q. (15)
and iz subject to inhomogeneous Neumann boundarey conditions which we
denote as Al = BC,

where % and . are linear differential operators. The principle behind solving
auch a aystem is to reduce the problem to one with homogeneous boundary con-
ditions (see e.g. Lanczos 18681, p. 435), To do this let 7, be any reasonable function
satisfying the boundary conditions, Then 7% = 7 — i, satisfies a linear boundary
value prohlem with homogeneous boundary conditions, ie.

Fla*] = @F = Q- Z[m); (16)
in the interior with .#[7*] = 0 on the boundary. A Poisson equation of this type
can be reduced to an ordinary second-order differantial equation by expanding
the variables in eigenfunctions. It will be seen later that this feature of the con-
tinuous Poisson equation has a most useful analogy in the finite difference
formulation,
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3. The grid system

To turn the above equations into a practical scheme of computation, they are
expressed in finite difference form on the following grid arrangement. The
pressure and temperature variables which are defined at the same points form
the basie grid. The velocity components «, v, w are all defined at different points
interlacing with the basie grid,

In & horizontal cross-section the 7, T points are distributed around radial
cireles. The zemal velocity points lie on the same vircles midway between the
7 points (figure 2). Radial velocity points lie along radii through the 7 points and
are located midway between the 7 points. Finally, a points lie on the vertical
lines of the 7 grid, midway between points (figure 3). The physical boundaries
are placed so that they fall halfway between the two extreme 7 points.

The continuous co-ordinates (v, ¢, 2} are thus replaced by the diserete grid
system (F, J, K) such that

r=a+{l-$14r (I =1.2..L+1); |
$=(Jd=1)Ag =12 ..M+ (17
e=(K—§) A (K=1,2..N+1),

give the co-ordinates of the 7 points. The grid lengths between m points are
given by

Ar = (b—a){(E—1), Ad=0(M-1), Az=dl{N—1). (18}
The angular size of the annulus @ is normally 27 but the formulation will treat
the general ease by assuming periodicity. The interlacing grids of the velocity
points can be similarly indexed.

The interlaced grid system presents little problem in establishing the finite
difference equgtions and appears to he over-all the most consistent arrangement.
The dizerete fluid element centred om 7 and bounded by the w, v, w points forms
the fundamental fuid element for which most concepts and properties such as
mass conservation apply. The grid system as a whole is uniform and symmetric as
far as point arrangement goes, i.e. there is no preferred direction. There iz of
cpurse a geometrical variation,

4. The finite difference equations

Having divided the fuid into small elements by a series of grid points which
are spaced at distances of Ar, Az and rAg¢, the time variable is next split up into
increments of At such that t = 7. Al where 7 denotes the current time-index. To
exhibit the finite difference equations and their multi-dimensional properties
in compact form, we define the following difference and averaging operators in
the notation of Richardson (1922 and Shuman (1862),

deq = [l + b)) —gla — JAx)]/Ax,

¢ = [l + 3Az) + qlz— JAa)) 2, )
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where ¢ represents one of the field variables, & (=v, b2, 1) ome of the co-ordinates
and Axis the discrete grid interval of z. The bar and delta operators form a linear
commutative and distributive algebra for which various operator rules and
identities can be constructed, e.g.

Gulitide) = T bt + 058, 4,-

For further examples and applications the fundamental paper on numerical
methods by Lilly (1964) should be consulted,

In this notation, a set of finite difference equations can he established in
the following form:

dt! + : d (rom o) + ; dafum v9) + 8. )

= — &7+ pF*(u) + (2Qu + [udlrhi™, (20

L — — e Tars
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8T+ = Ty o 8 (uP?) + 8 (0T=) = & [; d.(ré. T + i 8T + rF::TJm [(23)
S rv) +dutrdw =0, (24)
. ; 1 1
where Fxy) = ‘3 vt 580 —dpto— 8 (rdy ”-]Ijmg ;
1 AN '
= = S8 I ! 25
I¥un) = F,(r r?,{fr*u})+|5';:u B (}) - (3',:¢?:Jjngl ! (25)
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() = 5 delrd + g fpgt— i )
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These expressions and operator notation must be interpreted with respoct to
the grid-point of the variable under consideration, The centred time differencing
iz for the level 7 so that the predictions yield the variables at level (7411 The
non-limear, rotational and pressure terms are evaluated at the central level
whereas the diffusive terms use the non-central (r—1) level, denated by the
subseript “lag’. The continuity equation (24) applies at o7 point and is valid for
the tluid unit surrounding that point, The averaging in the equations is necessary
to provide variable valucs at grid points where the variables are not explicitly
defined, e in the buoyancy term, 7= averages two neighbouring 7' values to
give their mean as the value at an intermediate point which happens o be the
w point being predicted. Through using an interlacing grid svatem the amount of
averaging of this type is reduced to a2 minimum thus improving aceuricy,
Furthermare, the continnity equation has a unique exact form which can only
be achieved by such a grid; this uniqueness is essential for deriving the Poisson
equation. The only disadvantage oceurs in the rotational terms, where products
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such as wr must be averaged as u and » oceur at different locations, Defining 7 and
T at the same point is desirable for consisteney with the equation of state

o= pyl1=pT]

The variables u, v, wand T may be obtained by marching equations (20)-(23).
To obtain 7 and satisfy continuity, a Poisson equation must bederived. Toachieve
this, suppose for convenience that the prediction equations can be written as

6 =—0,m+ GV,
it = —(1r) dgm+ G, (26]
Syt = — 8.+ OW,
where G = (GF, G, GW) represents the non-linear, viscous and rotational
terms. Substituting these equations into the continuity equation (24) gives

Vi =T7.G, (27)
o 1 S
where Tir = ;&‘,l::rﬁ',. ) +_r—23¢¢ﬂ+3;:7,
1
aiid .G = }.s,[ra V)+ 0,60 +8,6W, (28)

Solving (27) during each time-step provides the values of 7 needed to complete
the marching process. (See §54 for minor modification. )

1n executing the calenlation the components of G, (26), ean be evaluated from
the variables of the previous time step. Forming the divergence of G.f the
Paisson equation (27) on solution gives values of m. Using these values of G and .
the variahles t, v, w and T at the next time step can then be directly evaluated.
The use of the same numerical values of G in the Poisson and prediction equations
guarantees consistency and satisfaction of the integral constraint {§6¢) for the
existence of the solution. The houndary eonditions then yield the external values
of the variables,

Reasons for preferring the above finite difference forms (mainly because of
stability reguirements) and other detailed features of the numerical scheme will
be discussed in the next seetion.

5. Remarks concerning the finite differencing

In this section we will examine the different ty pes of computational instability
inherent in finite difference forms of the Navier-Stokes equations and how they
cin be neutralized by the chosen system.

() Instability of the convection leyms
Consider an equation representative of the convection process:
8,4 +4d.47 =0, (24)

The linearized form S+ b g = 0, (30)

T This must be done numerically from previously caleulated G valves snd not by
differcnving the individual terms of sach component and calenlating those.
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has a well known partial instability (for instance, Richtmyer 1957) which can be
suppressed by realizing the Courant—Friedrichs-Lewy criterion that the time-
step increment be limited to Af < Ax/f|g,|.

The Courant-Friedrichs—Lewy eriterion alone does not suffice for the integra-
tion of the non-linear equation (29) and the computation eventually hecomes
unstable. The instability arises after numerous time-steps when the appearance
of large truncation errors causes an almost explosive increase in the total ENErgy
of the system. Phillips (1959) has shown that uncontrolled alinsing | Blackman &
Tukey 1958) canses this instability. Aliasing happens when waves that are too
short to be resolved by a given set of grid points are misrepresented by long waves
(Hamming 1962), The convection term can produce this phenomenon because
the non-linear interactions combine certain frequencies to produce higher fre-
quencics which lie outside the limit of resolution set by the grid, Thus non-linear
instability or quasi-non-linear instability (Miyakoda 1962) has its arigin in spaee
truncation errors.

However, Arakawa (1966) has shown that it is possible to devise forms of the
convection terms for which non-linear computational instability does not oeeur
because the aliasing is controlled. Tf the convection terms are written in the
tatal derivative form S0 ),

asthey are in equations (20)-(23), some of the integral constraints on quantities of
physical importance, such as conservation of kinetic energy and the quadratic
yuantities «*, o*, w® and T* can be maintained for the finite difference forms
(332, (w2 (1ir (re?)r and T2 In this situation non-linear instability can not
oceur. This follows from the fact that, if the square of a quantity is conserved
when summed over all grid points in a domain, the quantity itself will be bounded
at every grid point for the entire integration period. Aliasing can still exist in the
stable conserving scheme, appearing perhaps as a phase error or as a distortion
of tho energy spectrum. However, the total energy and thence the average scale
of the motion are free from alinsing errors.

Insummary, the stability of the convection terms can be ensured by (i) meeting
the Courant-Friedrichs- Lewy criteriont and (i1} by expressing the finite differ-
ence formulation in total derivative form to guarantee its satisfaction of the
enivalent to Gauss's divergence theorem (see Bryan 1966) and the consequent.
conservation of a variable and its quadratie,

(b) Weak instability of time differencing

Whereas the above instability is due to the convection term, the instability of this
section is due to the predietion term, An equation such as

&g +8.17.¢7) =0, (31)
involves variables at three time levels, which indicates that the first-order con-
tinuous eguation has besn raised to a second-order difference equation, This

introduces a non-physical computational mode into the solution (Platzman
1458). The mode takes the form of an oscillation, with respect to time, about the

Where g, now represents the maximuim possible g.
Ta i
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true solution. The amplitude of the oscillation grows slowly with time and
eventually leads to the formation of two separate solutions at the even and odd
time steps. Hence the resulting instability is referred to as ‘time splitting’
i Henrici 1962).

Integrations of an equation similar to {31} over a long period of time show
that the solutions correspond very accurately to their analytical counterparts
provided the instability remains small (Lilly 1965). Furthermore, the kinetic
energy values indieate that time splitting oceurs and can amplify considerably
before the average kinetie energy deviates rom a constant value. After several
hundred time steps the instability dominates the solution and the kinetic energy
deviation arises,

O the other hand, a study of methods ather than the centeal time differencing
displayed an undesirably strong damping of the kinetic energy (Kurihara 1965).
Thus the central differencing methaod is preferable provided the weak instability
can he controlled. Thiscan be done simply by perindieally averaging the variables
over adjacent time stops (Arakawa 1965, private communication) and restarting
the caleulation with the averaged valnes, The computational mode is not elimi-
nated but iz suppressed.

"T'he continmity divergence variable & exhibits an instability of & type similar
to that deseribed ahove for the veloeity and temperature variables. If the Poisson
eguation (27) can be solved exactly, there is no problem. In reality, however,
a degree of round-off error is inevitable even with the trizonometric method,
This in turn creates an artificial divergence which can lead to computational
instahility. A similar behavioonr was noted by Smagorinsky (1958} in o comparable
emputational system devised and rejected for integrations for the general
circulation of the atmosphere.

It was found that this computational diffieulty can be overcome by using a
computational strategem; the round-ofl divergence at one step is used as o
eorrection term in the forcing terms of the Poisson equation. Thus instead of (27)
wi take the original diverzenee equation, i.e,

TVir = T.G=4 2 (32)

sinee the divergenes in the computation at a given step (v — 1) is not exactly zero
(Gr7=1 & 0] hut that at {=+ 1) cuight to be zero (G741 = 0), (32) is written

T =T, G+ {1 2AL, (33)

By solving this form of the equation and repeating the process of inserting the
round-off error into the foreing function it is found that % does not grow and
remains bounded at the order of the ronnd-off errors. Harlow & Welch (1965)
introduced this technique of cantrolling % for the case of two-dimensional flow in
which relaxation procedures are used to solve the Poisson equation.

A ecomputation with 57 instead of 7 in (31) gives unstable & prowth,
indicating the sensitivity of the stability requirement. The growth of % in forms
of the Poisson equation other than (33} is most likely due to the centred time
differencing and the azsociated presence of a weak instability of the ‘splitting’
variety.
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() Tnstability of the diffusion terms

The diffusive terms in the prediction equations have a well-known strong partial
instability (for instance Richtmyer 1957). This can be suppressed by limiting
the time step Lo At < (Az)*/Se, At < (Az)?/8¢ whichever is the lesser.

() Formulating the friction lerns

If the conventional form of the friction terms, i.e. #7772 had been used in the
equations leading to the formulation of the Poisson equation (32), then the
friction terms would have made a round-off contribution of »72% to the forcing
function. To avoid this feature in the finite difference system the friction terms
must be expressed directly in terms of the vorticity, ie. as /F = — 7 A w. In
terms of components this is expressed as

F,F[i‘l:' = ':?:u = I::l"l.'ll}'lj:rl".-" 5{:" l
IPiu) = 8,0—4.E
H*f!{:] = [ll-'?'}ﬁ#lf._tl_flr:lr?rl:'rli:lf]' J

where L= (lfrjdyw—bu, p=28v-Fw, = (1r)dlru)—(1]r) dyw. (35)

{34)

Substituting (35) into (34) yields the expressions of (25), Furthermore, from (a4
it follows that TF, the contribution to the Poisson equation, is identically sero.
If formulations other than that using the vorticity definition are used, this
identity does not hold because of truncation problems in differencing geometrical
factors.

The vorticity formulation also provides a convenient form of the boundary
comdition on the normal pressure gradient. In this condition the friction must
beevaluated at the boundary and, whereas in the standard formulation this wonld
involve variahle values at —Ax oputside the boundary, the vorticity method
involves valiios at only — §Ax outside. This improves aceuracy,

(e} Formulating the volalion lerms
The finite difference formulations of the rotition terms in the #, woquations (20).
(21} are interrelated beonuse of the need to maintnin o rero net contribution from
them to the kinetic energy. However, some arbitrariness exists in the way the
rotational terms can be set up boeause of the need to average variables on the
interlaced grid system, It can be shown, by algebraic manipulation (for an
example of which see Lilly 1964), that the forms of (20) and (21) have the desired
property of conserving kinetie energy and angular momentum. The rotation
term in the v equation is sssentially a single term originating in the kinematical
acecleration (rQ +u)?, (with the Qf part neglected), and has been treated as such,

(f) The bowndary conditions
The boundary conditions express the state of the fluid at the boundarics, Com-
putationally these conditions when expressed in finite difference form must
pravide definitions of the variables at the houndaries or at points just outside
47 Flnid Mech, 37




738 . P. Williams

the boundariest and must also maintain the finite difference properties such as
energy conservation for the fluid near the boundary. The external values are
needed for evaluation of the prediction components G, (26}, at points adjacent
to the boundary. For a stageered grid, the simplest and most obvious form for
the boundary conditions also appears to be the best for conservation and
oonsistency.

Thus in annulus convection, for example, the conditions are as follows: (i) the
hase is an insulated non-glip surface for which a suitable form for the boundary

conditions is .
w=F==4T=10

E:?r = r{;g?_‘: ¥ I '_?,l &..bf}u = ;]; 'ﬁ'rz{?'?}}] 1 {36}

applied at z = 0 (i) the upper fluid surface is an insulated free slip surface with
conditions

w=fu=do=dT=10,
2 % z } [3?}

f.m = ﬂ;}T‘“‘,_
applied at z = d; (iii) on the non-slip sidewalls, the eonditions are

v=9F=%=0,

S.ar=v [ —8,.0— ]43,{?'r3¢1£}-| i
- _

and T = T, T, applied at v = a,b respectively.

() Truncation errars
Truneation errors of the predietion equations are of order (Ax)® or (Af)2

6. Details of the Poisson solution

The general principle behind solving an elliptic equation (15) with inhomo-
seneous Neumann boundary conditions was diseussed earlier. The details of
solving the particular finite difference equation (27) rapidly will be presented
in this section.

{a) The first step in solving equation (33) which we write as 7% = @, is to
find a funetion 7, which satisfies the boundary conditions §, 7 = BC. One such
funetion can be formed by setting m, = 0 at all interior pressure points and
setting 7, = + BC.An at points outside the boundary. The formation of 7%,
for modifying € is restricted to points lying just inside the boundary at which
0% = @ F BO/Ant while in the remainder of the interior @ = @ holds, The
problem iz then to solve T%r* = Q% with &, 7% = (0 where #* =7 —m, and
(¥ = £ — "7y,

t Fxternal points ary o computational device to intraduce the boundary conditions

and to avoid having to redefing the finite difference equations near the boundaries.
+ With minor modifieation factors at ¢ = a, b
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{#) The houndary conditions on 7* are met by expanding 7* in a finite cigen-
function series. In the g-direction, a periodic trigonometric expansion suits
the periodic boundary conditions whereas for the vertical direction cosine
expansion suits the condition of a zero pressure gradient. Thus we expand #*
into two series of harmonies (rather than into a single series of double harmonics.
which is computationally slower)

M-8
= T AL,
L E i}

N-
P, _Eu P,y Hy(K), (38)
where 2. /7 are indices for the periodic and cosine coefficients respectively. The
eigenfunctions are
204 P G 4
Ji=T ") e =0, Ty 3o M =1,
H) =T, {ﬂf—l) n:-s(u ol — ]l) for: a4=0,1,2,.., }{M=1)
2 Y . 2 M—13) .
oy o . =MW jeseg M =2,
HiJ) = (37—) -sin =it~ :(_ s)| for @=dM-1+1.., M2,
(49)
where = 1,2, .., M and I'y, = 2+4 fora = 0 and & = (M - 1) but [', = 1 for
other =, Also

]
HyK) =T, ('»—1 mas(\, = ]) for f=0,1,2,..N-2  {(40)

where A =23, . N. 'y =2} when § =0 but is otherwize equal to unity,
This non-standard cosine expansion allows for boundaries that lie hetween grid
points; HyK =1) = HJ(K=2) so that §.H, =0 at z=0 reflects this. The
number of coeflicients in each series Pqurnlu the number of grid points in the
corresponding digection so each series uniquely matehes the data (see eg.
Lanceos 1961, p. 89),

Expanding o* and Q* in serjies and substituting into (27) gives i second-order
difference equation for the coeflicients:

(L) 8 drda P — (A + (A2 By = Q. (41}

wlhiere
2 ,
A, = —-5}1(1 CoE ‘1,_1) for =01 .. 88-1),
2 o .:'U—l[
Ay = -—,--ll—ms-—---_ a-—Tl for a=8M-D+L.., M-
0

T i P
== hioe ; =0.1....N=2
As qﬂ:‘ll‘-"( — R —1) e A ’

(¢} Tao solve the ordinary difference equation (41) subject to the boundary
conditions 4 Fz= 0,1t is written out in full as

_AJLIG,F-].I’ |-1+B.r{ ﬂ]f - prp':II—I = "i-r)_.l'!' |:4E':|

t M s resiricted to add integors:
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where d;=1,
By = [2r + (Ar)* (r1A, + 0 ) |I[r + A2,
€ = [r—Arf2)/[r + Ar/2],
Ly = —[{rlArP){r + Ar/2) (€, o).

The boundary conditions are (), = (£ 14

and B ) PG Rl ¥

{d) To avoid exponential golutions in golving (41) the recursion functions

By, ¥y are introduced by
(Topdr = (Fapdpa By + [4)

with #, = 1, F, = 0 (for instance, Richtmyer 1957). Substituting into (42) gives
by = (B, —C By ), Fy = E(D+CpFp )

which ean be caleulated for [ = 1 to [ = L (£, is & fixed function and need only
be caleulated once). The boundary condition gives (Pglp., = F /(1 —£;) and
thence all P, may be caleulated for f = L, L—1, L—2, ..., downward to 1 using
(43) and the known £, K.

{¢) When o = =10, then A_ = A =0 and the above recursian scheme no
longer works. Equation (41) reduces to (1/r) 8,(rd, Fyy) = €y, and the conditions
&, Fyy = Oonr = a,b make it degenerate. A study of this degenerate mode reveals
the nature of this ty pe of Poigson equation and the constraints that are necessary
for solutions to exist. This equation has a solution provided

L.,
% Qurlr==0 {44)
Fisr
|
To prove that this holids we recollect that @ = 7 .G and 4,7 = % thence

¥ = T .G*, where G* = G~ "ny is zero on the boundaries. Thus
17 b7
P @t=ZEV.G*=0
" I—g

indicates the veracity of (44). This constraint is also a reflexion of Gauss’s
theorem, i, in the continuwous

J."F"'"r.r dr = J."-T-n .ds; JQJT = J.G.ﬁ's,

g0 that J (Vi —VG) dr=J‘q"-Fn—G]|_d5=U.

The hommdary condition on the normal pressure gradient must therefore be con-
sistent with the basic equations; in finite difference form ¢ must be formed from
the eomponents of the prediction equations. This places a constraint (44) on
the finite difference formulation. The constraint arises only in the zero-zero
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coeflicient because it is identically satistied by the trigonometrie functions #,,
11, in the non-zero modes. The actual colution of £, can be obtained by a direct
marching of the equation, with the upper boundary condition being met im-
plicitly by virtue of (44). The absolute value of £, is undefined as a consequence
of the fact that # can only be determined to within an arbitrary constant.

{(f) Trigonometric synthesis of the P2, i vields the pressure 7%, In the actual
computation the only trigonometrie transforms performed are this synthesis,
equation (38), and the analysis of the forcing function 0%, i.e.

@

-1
3 QEHL).
Je1 i
» {45)
Qap= X @, Hy(K),
el

(#) A method for performing the trigonometric transforms (38) and (45) in
a rapid fashion by reducing the amount of multiplication in these summations
is given in the appendix. This is achicved by taking advantage of the EVINmMetry
properties of the trigonometrie functions. By this device the time needed to
solve the Poisson equation can be reduced so that it occupies less than i of the
computational time,

(h) We note in passing that in our choics of eigenfunctions we avoided using
the Bessel functions associated with the radial co-ordinate. Although this choice
is arbitrary the use of the E, F recursion schemie in the r-direction is computa-
tionally advantageous compared with using Bessel functions.

7. Integral properties

An apparent simulation of physically observed characteristics does not in
itself form an lILILlE‘I“i-t:ll‘l{ill]g of the low. Diagnostic integral techniques provide
a very sensitive measure of the mechanieal similarity of model to physical ent ity
and together with an analysis of component terms (Williams 1967) could pro-
vide the type of insight from numerical studies that is normally derived from
analytical studies. For, although numerical methods are capable of accounting
for non-linearity and other complexitics, they do not vield an immediate urulm-
standing of the mechanics involved. Mowever, in the integrated form of the
equations the non-linear effects vanish or are simplified and this makes the task
of their interpretation easier than that of the full predietion oquations, The
balancing of the energy components also provides same confirmation of a proper
execution of the computation. The uze of different hitegral expressions for
describing the mechanies has been an important technique developed in recent
years for numerival solutions in meteorology (see e.g. Smagorinsky, Manabe &
Holloway 1963). The type of integral that is of use in anal yeing a solution varies
from problem to problem.

The simplest integrals that are useful diagnostic and interpretative tools are

T 1L is to he emphasiced that this paper deals only with how numerical solutions ray
ha obitained, Tt is equally important to develop methods of analyring the solutions.

‘
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the total or global integrals for kinetic and potential energy; in the continuons
form these are respectively:

Ep = G+ i+ u®), Ep={(=ppl)
i i i
whit )= L mfu -:E:;.{rJ‘n d={ ).

Defining conversion and diffusion integrals as

L1 By = fig (wl',
g = (el o)+ wlie) + wHiw)
ep = — fige(zV*T",
the integrated forms of the prediction equations (1) to (4) are
(Bg) = Byt Epteg,
(Ep)y = —Fg : Eptep.
Itis only a question of lengthy algebra to show that the finite difference equa-
tioms also yield diserote energy summations and equations of the same form,

The use of the conserving form for the convection terms ensures this and that
the conversion rites of Immnti:d and kinetic energies are equal.

8. Resunlts

The veracity and feasibility of the computational method liesin the demonstra-
tion of its practicality. Most numerieal studies of this type are limited or com-
promised by the amount of information that the computer can handle. The
method has been programmed fora UNIVAC 1108 computer.f When the program
utilizea enly the immediately available core storage the computation is rapid
(less than 2 sec per time step) but iz limited in resolution to a maximum of {14)%
points. For higher resolution it is necessary to use limited access drums for
temporary allocation of the variables and the programming becomes highly
complex. The program is set up =o that during the marching of the variables
only three (¢, 2) planes of the variables need be placed in core storage at a given
time, the remainder being held on the drums. By using drums with a storage
capacity ol approximately 1+4 million words and a core storage of approximately
50,000 words, resolutions of up to 60 34 x 34 can be considered.

In table 1 the computation times per step for different resplutions are shown.
The maximum time is 96 sec and although caleulations with such a resolution are
time-consnming it does represent an upper bound for the method; a bound which
can be reduced with advances in technology or improvements in programming.
Comparing the low resolution all-core storage program with the drum storage
method at a (14§ resolution, the drum method requires 0-77 see longer beeause
of the drum transfers. This inefficiency is less at higher resolutions, The Poisson
section oecupies only 16 % of the computation time in the core formulation but
about 23 %, in the drum formulation, for all resolotions,

t A comperative caleulation whiing this method pud the mothod deseribed in Willinms
(1967 produced simiter results,
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The method diseussed above is being used to study annulus convection and
other fluid dynamical systems, As such solutions and their analysis are of an
extensive nature, the physieal aspect of the solutions will be presented separate! v
in a fortheoming paper,

In figure 4 we present merely an outline of a solution for the so-called steady
wave flow of the Rosshy régime of annulus convection. Starting from an initial
condition of isothermal solid rotation, integration to a steady state was made.
The configuration parameters are a = 2em, b= dem, d = $em, AT = 5°C,
{} = 0-8radsec’ and the physical parameters for water at 20°C are

Resolution Time per Time on
= — fimne step Poisson secl. Percentage  Method of
L1 M+l Al e {=ei) on Potssnon storage
14 14 14 240 (-32 16 Core
14 14 14 277 0-63 23 Pruam
|4 42 14 770 1-80 2% Firim
23 ae bl 11-4 2-50 23 D
e E A 34 317 12:4 24 [3rvum
i 34 3 937 237 24 [y
as 3 34 Gieh=11 16 24 Torom
4 b 34 700 158-2 24 D

Table 1. Computation time per time step and method of Atoraoe
are-shown for o owide range of resalutions

p=1008x 10-Fem®see~t, k= 1420 10-%cm?sen?, £ = 2.054% Bt o
The Rosshy and Taylor numbers are

= (AgATd) [O8h—a)?] = 0525  and g = 4003b — q)?/(p2d) = 22041 % 108

respectively. The computation was made with a resolution of L = N = 33 and
M = 37fora @)= 2 sector to ascertain that wave-number 5 evolves, The calenla-
tion was repeated with @© = 2x/3 and the resulting steady-state solution is
presented in figure 4,

The horizontal patterns of the pressure variable at the free surface, and in the
Ekman layer on the base, are illustrated. Alsoshown are the vertical distributions
ol temperature and zonal velocity at the trough and ridge extremities of the
surfaco wave pattern and similar distributions for the zomally averaged fields
of temperature. zonal veloeity and stream function . The stream function for
mean riadial-vertical motion is defined as

vl = =y rlw] =y,
where | | indicates zonally averaged variables.

The predominant features of the solution are (i) the formation of steady wave-
number & which rotates in the direction of (anticlockwise) at a rate of L3235
rad sec relative to the container; (i) the triple cell system of the averaged
meridional motion and (i) the mainly positive How of the zonal motion, Negative
zonal velocities exist in the region of the base near the inner and outer oylinders:
(iv) the different curvatures of the vertical temperature contours in the trough
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Frauns 4 (a), The horigontal disteilation of pressure (1) in the Elkman layee near the hottom
of the luid (z = Az)and (il) near the top of the fluid (z = 4 — 14z). The absolnte maximum
and minimum pressare values are for (i) — 3558 and — G686 em® gon 2 and for i)
L5174 and 08870 om? see-t Note that the wave in the lower part of the fuid = 187 mn
front of the wave in the upper part, This phase difference i § of & wavelength as in Bady's
theory.
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I

| {iii) {iv)

| Frovne 4{fi). The S[E.'Eu'f_'l.'-ﬁtﬂt{' eontours of the verties! distribution of the wonal \-._.]m_.it}-

at (i} the trough and (i) the ridge and the temperatore at (i) the tramgh and (iv) the
ridge of the surface wave. In all diagrams each variable is normalized with respect to its
maximum and minimum values, The normalizsed moximam and minimom have the
respoctive values of 140 and 0-0 and the other contours wee at interyals of 001 [ -2 in
tigire 4 {a)), The absolute value of a given cantour of, e« may be determined from the
relation w = & min 4 contour value x - (ieomax — womind, The absolote maxirem and
minimum valies aee 22:4, 17:3.°C for T and 3522, — (1321 emsee ! for v at the trough
and (4601, —0-1573 em see~? for w at the ridge. The broken line indientes the econtour
of zero zonal velocity abovo which the veloeity is positive, ie. in the same setse as the
rotation, and below which it is negiative, The non-dimensional radisl eo-ordinate
' = (r—a)/ib=r) commenees atl the cold inner evlinder {on the left of cach dimgram).

F e




Fuovrr 4ic). The steady-state contours of (i) stream function and zonally averaged
{ii} temperature and (iit) ronal veloeivy. The absolute maximom and minimum vidues are
401750, — 005347 emPaec—! for 4f, 225, 17-5°C for T, and 0-3027, — (1080 cm gee-L
for w, The stream function areows indicate the dircetion of the meddional Aow,
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and ridge and the linearity of the mean temperature field: ( v) further analysis
of the complete structure of the 7, p and w waves to (he presented in the forth-
coming paper) indicates phase and amplitude relationshi pe similar to those of
the classical Eady (1949) wave, suggesting that the wave flow is intrinsically
a finite amplitude Eady wave.

The author wishes to acknowledge his indebtedness to Mr Henry Stambler
for programming assistance. I am also grateful to Drs K, Bryan and K. Mivakoda
for valuable suggestions and to M. B. Jackson and D.J. Johnson for preparing
the fzures:

Appendix. Fast trigonometric transforms

A method for reducing the amount of computation time needed to perform the
trigonometric analysis and synthesis in the solution of the Poisson equation will
be presented. In recent yenrs, methods of performing trizonometric transforms
rapidly have been devised by Cooley & Tukey (1965) and Hockney (1965). The
alternative method to be discussed here is a variation of the method of Dunislson
& Lanczos (1942). Only periodic analysis will be dealt with and the obvious
extensions are left to the reader. The method aveids the restrictions and the
logical complexity associated with the program ming of the Cooley—"Tukey method
and for the range of harmonics normally nsed ( < 60)is sulliciently rapid, affording
aninerease in speed of around 65 over the standard method of direct summation.

An analysis by periodic trigonometrie series requires the multiplications and
summations of the following type:+

bl =1
= X Gl o 4 =0:180002m;
H=)
Al
-!ll.'_-'l l:'\ ::I
b= B foS for m=1:9 ., 8m=1,
=1
144 ok 14h, mas
where G, =T.]= ) Log-——: W = (—- ) gin —-
i #\2m, 2m R 5 e

for s =0,1,2, .. 4m—1 and Joo the function being transformed is periedic so
that £, = fy. The method to be deseribed allows the evaluation of tge b with the
amount of multiplication reduced by a factor of 8. As multiplication is a time-
consuming operation this reduction is most useful, The number of grid intervals
M—1 = 4m has been chosen to be o multiple of 4 in order to derive the full
benefit of the symmetry properties of the trigonometric functions in the four
fuadrants of the eivels,
The reduction ean be split up into three separate stages,

T For canveniener tho notation of § 68 iz replaced by w simpler ona,
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=1
ooy
o

(er) Steege 1. Reduee the summeation renge from 4 to 2m
This is achicved by dividing the analysis into an even function (cosine) and odd
funetion {sine) analysis by taking the sums and differences of the original
ordinates. Thus, forming¥
L =.l|rr+.|rvl-m—r: vr=fr_f-im—r fﬁl" fr= l,2,...~2m—i LA 2’]
and w, = fi;; %oy, = fop,, 8nd it can be shown by writing, e.z.
i tm—1
= (L 4 E )fﬁqu
=4 a=2mt

and simplifying the second integral, that

Ly

;= X uar*."zn for: @ =10,1,..::2%m, {A3)
gl
P — |

b= ¥ 8, for w=12:,48m—-1 {A4)
He=1

(b} Stage 2. Reduece sunamation range from 2m to m
Forming the sums and differcnces

He = W+ b,
= = "’”i for r=0.1,.,.,m-1,
Uy = U — Uy

! (A 5)

o= U4y

. ' i for - gi=lydei o=,

U=t — Uy

and g, =y, v, = v, and then by splitting the summation range as in stage 1,

wee tan show that

{r.ll.—'l i
1w W [1.3 T | S | .
TR aler _ L35 2
=T & [“E]nﬁ M % 10,2, 4, ..:2m | (A6)
bz 1,382
= s _ L3S 2w .
b, Z [u;]qw for a 246, .. 2m— 2" (AT)

The numbers in the curly brackets are related by level. The double and single
prime notation indieates variables with even and odd & values respectively.

() Stage 3. Reduce the & vange from 2m fo wm
(This reduction of the summations (A 6) and (A7) can be ignored if a gain of
4 rather than § is sufficient for the reader’s purpose.)
The two eoefficients e, and w, _ contuin two common series of alternate

terms which differ only in sign. These series can be identifed, defined and nsed
to reduce the ¢ range, Thus we can write;

-
1l

¢ "
= i, l

for o=0/1,2..m

L]

bz = B0 )
by =+ f}:,].
=, — b3,

(A8
and for «=1,2.8,..m,
b2m .

f The varinhbles u, @, r aee separutely dofined to those in the main text,
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wl), 8= 13,5, ...m0 |fz=1,3.5,.. mox] \
“'l&‘.f&i-_-? ﬁz @ LR t L] L
it B ;I:ng,p‘*‘"" I8, =1,8.5, ...,mux”.x == ()2 .,.,mm;]'
# - H;l [a"i}:”,f,-.l,,..,ﬂlﬂ ”d: 1,3;5,...,mox
=% ( 20, e _ R :
el £ |8, = 0, 2,4 o mexf la= 0,24, .. mex
: : . _ r (A9
b oy j.u_q S &, =1,38,5, ,..,nmx] a= 13 ﬂ,...,]"ﬂﬂx]:
omled ™ |8, =1,3,5,....mo o =2,4,8,..., mex|"
b=y LA P =248, ..,,max]::z =1,3,8,....mox
RN e A B T w0 [o = 2,4,8,..., mex|")

whers mox, mex are odd, even members of (e, e — 1} and mo, me are odd, even
members of (m— 1, mi— 2) respectively, where double and single primes on a,, b,
indicate variables with even and odd s values respectively.

To evaluate a,, b, the summations (A9) are used together with the folding
funetions defined in (A 8), (A Sjand (A 2), Although the number of multi plications
needed to evaluate all the coefficients has been decreased by a factor of &, the
increased complexity of the summations reduces the net gain to 645,
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